Abstract
Left ventricular assist device (LVAD) provides an effective artificial support system to the heart patients. Despite the improved life survival rate, complications like hemolysis, blood trauma, and thrombus formation still limit the performance of the blood pump. The geometrical aspects of blood pumps majorly influence the hemodynamics, therefore these devices must be carefully engineered. In this work, several versions of centrifugal blood pumps are simulated using ANSYS-CFX to propose a best compatible design for LVAD. A hemodynamic levitation approach for the impeller is also suggested to overcome the cost and weight issue associated with the magnetic levitation. The blood flow is modeled by implementing Bird-Carreau model and its turbulence is solved using the SST turbulence model. The influence of the blade profile, blade tip width, blade numbers, and splitter blades on the hemodynamic characteristics through the pump is observed. An optimum design of centrifugal blood pump for the assistance of failed ventricle is proposed that can effectively pump the blood from the left ventricle to the ascending aorta. The proposal can be adopted by LVAD designers to have hemodynamically tuned efficient product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.