Abstract
The unsteady cavitating turbulent flow in a Francis turbine is simulated based on governing equations of the mixture model for cavity-liquid two-phase flows with the RNG k-ϵ turbulence model in the present paper. An improved mass transfer expression in the mixture model is obtained based on evaporation and condensation mechanics with considering the effects of the non-dissolved gas, the turbulence, the tension of interface at cavity and the effect of phase change rate and so on. The governing equations of the mixture model for the unsteady cavitating-liquid flow is solved by a direct coupling method numerically with the finite volume method (FVM) using the unstructured tetrahedron grid and the structured hexahedral grid system. This direct coupling simulation was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine. The simulated external results agreed well with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.