Abstract

In recent years the use of liquid metals has become more and more popular for heat transfer applications in many fields ranging from IV generation fast nuclear reactors to solar power plants. Due to their low Prandtl number values, the similarity between dynamical and thermal fields cannot be assumed and sophisticated heat turbulence models are required to take into account the anisotropy of the turbulent heat transfer involving liquid metals. In the present work, we solve an anisotropic four-equation turbulence model coupled with the Reynolds Averaged Navier Stokes system of equations to simulate a turbulent flow of liquid sodium over a vertical backward-facing step. We implement an explicit algebraic model for Reynolds stress tensor and turbulent heat flux that takes into account flow anisotropic behavior. We study forced and mixed convection regimes when a uniform heat flux is applied on the wall behind the step. Linear isotropic approximations for eddy viscosity and eddy thermal diffusivity underestimate the turbulent heat flux components while this anisotropic model shows a better agreement with DNS results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.