Abstract

Concentrated solar power plays an increasingly significant role in power generation. The photothermal performance of the receiver has a notable impact on the solar thermal power system. Herein, a cavity receiver enhanced with a transparent aerogel for a parabolic dish system is first proposed, and a three-dimensional numerical model considering the absorption and scattering of the solar radiation by the aerogel is established to investigate its photothermal performance. The results show that the transparent aerogel can significantly reduce the heat loss of the cavity receiver. A cavity receiver with a 0.01 m-thick aerogel can reach an efficiency of 85.0%, which is 5.1% higher than that of the cavity receiver without the aerogel. However, as the intercepted solar radiation energy increases, the ability of the aerogel to improve the receiver efficiency is weakened because of the absorption and scattering for solar radiation by the aerogel. In addition, the efficiency of the cavity receiver with the aerogel is less affected by the inclination angle than that of a receiver without the aerogel. Finally, the challenges of applying transparent aerogels in cavity receivers are discussed. This work suggest that the aerogel cavity receiver has application prospects in parabolic dish solar power generation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.