Abstract

A novel multilateral well for coalbed methane extraction was proposed in the study. There is a main wellbore at the longitudinal center of coal seam and four lateral wells at the horizontal center in the multilateral-well system. Compared with traditional drainage holes, multilateral-well system has a better performance on coalbed methane development. A hydraulic-mechanical coupling model of multilateral well was established, the pressure and permeability ratio distribution of the gas extraction process were analyzed comprehensively. The sensitivity analysis of lateral number, length distribution and intersection angle of multilateral-well system were studied. The results indicate that there is a minimum gas pressure distribution around the multilateral well and the overall permeability of coal seams increases with production time and the permeability around the multilateral well is larger than the area away from the multilateral well which induced by the gas desorb and matrix shrink. The quantity of lateral wells has a positive effect on cumulative production. When the total length of lateral wells is equal, the uniformity and symmetry of lateral length distribution are two key factors on the gas extraction performance. The minimum intersection angle has a positive effect on cumulative production. This study provides a better alternative for traditional drainage hole to obtain greater coalbed methane performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.