Abstract
Numerical simulation based on phase field method was developed to describe the solidification of two-dimensional isothermal binary alloys. The evolution of the interface morphology was shown and the effects of phase field parameters were formulated for succinonitrile-acetone alloy. The results indicate that an anti-trapping current(ATC) can suppress many trapped molten packets, which is caused by the thickened interface. With increasing the anisotropy value from 0 to 0.05, a small circular seed grows to develope secondary dendritic, dendritic tip velocity increases monotonically, and the solute accumulation of solid/liquid interface is diminished distinctly. Furthermore, with the increase of the coupling parameter value, the interface becomes unstable and the side branches of crystals appear and grow gradually.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.