Abstract
In-situ bioremediation is one of the effective technologies for cleaning up petroleum-contaminated sites. To improve efficiencies of conventional bioremediation processes, biosurfactant treatment has received much attention due to the surface-activity, biodegradability and low toxicity of biosurfactants. In this study, an integrated mathematical modeling system was developed for simulating the biosurfactant-enhanced bioremediation (BEB) processes under typical Canadian site condition. The model included modules of multiphase multicomponent flow and transport, biological degradation, and biosurfactant-enhanced remediation. A pilot-scale physical modeling system, with Rhamnolipid being used as biosurfactant, is designed to simulate the BEB process. The study results demonstrated that the developed mathematical model is effective in examining the coupled effects of biodegradation and biosurfactant-enhancement within a multiphase multicomponent transport framework, and can be used for supporting management of petroleum-contaminated sites under cold climate conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.