Abstract

Simulation data are presented for identifying and analysing the dynamic properties of the rainbow metamaterials as presented in the articles “Rainbow metamaterials for broadband multi-frequency vibration attenuation: numerical analysis and experimental validation” (Meng et al., 2019 [1]) and “Optimal design of rainbow elastic metamaterials” (Meng et al., 2019 [2]). In this data article, the frequency response functions and mode shapes of the rainbow metamaterials are numerically calculated by Finite Element models set up in Ansys Mechanical APDL. Harmonic analysis was performed to figure out the receptance function values of the rainbow metamaterials within the frequency regime 0–500 Hz. Modal analysis was applied to estimate the mode shapes, which could be used to explain the critical peaks and dips in the receptance function curve. Source files of Finite Element models are provided in the data. The Finite Element simulation is not only an effective alternative way to estimate the dynamic properties of the rainbow metamaterials, the mode shape analysis, which is unlikely to be achieved with the analytical model, provides direct insights into the underlying vibration mechanism of the rainbow metamaterials.

Highlights

  • Simulation data are presented for identifying and analysing the dynamic properties of the rainbow metamaterials as presented in the articles “Rainbow metamaterials for broadband multifrequency vibration attenuation: numerical analysis and experimental validation” (Meng et al, 2019 [1]) and “Optimal design of rainbow elastic metamaterials” (Meng et al, 2019 [2])

  • The frequency response functions and mode shapes of the rainbow metamaterials are numerically calculated by Finite Element models set up in Ansys Mechanical APDL

  • The Finite Element simulation is an effective alternative way to estimate the dynamic properties of the rainbow metamaterials, the mode shape analysis, which is unlikely to be achieved with the analytical model, provides direct insights into the underlying vibration mechanism of the rainbow metamaterials

Read more

Summary

Introduction

Simulation data are presented for identifying and analysing the dynamic properties of the rainbow metamaterials as presented in the articles “Rainbow metamaterials for broadband multifrequency vibration attenuation: numerical analysis and experimental validation” (Meng et al, 2019 [1]) and “Optimal design of rainbow elastic metamaterials” (Meng et al, 2019 [2]). Numerical simulation data for the dynamic properties of rainbow metamaterials

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.