Abstract

Single stage injection blow molding process, without preform storage and reheat, could be run on a standard injection molding machine, with the aim of producing short series of specific hollow parts. The polypropylene bottles are blow molded right after being injected. This implies that the preform has to remain sufficiently malleable to be blown while being viscous enough to avoid being pierced during the blow molding stage. These constraints lead to a small processing window, and so the process takes place between the melting temperature and the crystallization temperature, where the polypropylene is in its molten state but cool enough to enhance its viscosity without crystallizing. This single stage process introduces temperature gradients, high stretch rate and high cooling rate. Melt rheometry tests were performed to characterize the polymer behavior in the temperature range of the process, as well as Differential Scanning Calorimetry. A viscous Cross model is used with the thermal dependence assumed by an Arrhenius law. The process is simulated through a finite element code (POLYFLOW) in the ANSYS Workbench framework. The geometry allows an axisymmetric approach. The transient simulation is run under anisothermal conditions and viscous heating is taken into account. Sensitivity studies are carried out and reveal the influence of process parameters such as the material behavior, the blowing pressure and the initial temperature field. Thickness measurements using image analysis are performed and the simulation results are compared to the experimental ones. The simulation shows broad agreements with the experimental results. An optimization loop is run to determine the optimal initial thickness repartition. Design points are defined along the preform and the optimization modifies the thickness at these locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.