Abstract

Based on the stress-strain curves at the temperature of 300-450 °C with strain rate of 0.01-1 s−1 by hot compression tests, the empirical dynamic recrystallization models for the semi-continuous AZ31magnesium alloy were developed. The dynamic recrystallization evolution during the seamless tube extrusion of the AZ31 Mg alloy was simulated by numerical method with the derived models and validated by experiment measurements. The results show that at certain extrusion speed the influence of the extruding temperature on the dynamic recrystallization fraction was significant. With the increase of the extruding temperature the volume fraction of dynamic recrystallization increase obviously. The predicted dynamic recrystallization fraction was in an excellent agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.