Abstract
This study investigates the electrochemical recovery of copper from wastewater using cylindrical and conical flow reactors. Electrochemical approaches offer advantages such as environmental compatibility, operational versatility, and energy efficiency for heavy metal remediation. However, effective recovery from dilute effluents remains challenging due to mass transfer limitations. In this work, numerical simulations were conducted to analyze the flow field and current distribution in the reactors, with a focus on the copper reduction process. Experimental results were compared with transient simulations to assess the influence of geometry and operating parameters on the performance of the reactors. The study identified that conical reactors, particularly those with a narrowing electrode gap, enhanced mass transfer rates, leading to improved copper removal efficiency. Key findings include the relationship between electrolyte flow rates, Coulombic efficiency, and copper recovery efficiency. This work contributes to the investigation of electrochemical processes for sustainable heavy metal remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.