Abstract

This paper is devoted to the numerical reliability and time requirements of the Mixed Finite Element (MFE) and Mixed-Hybrid Finite Element (MHFE) methods. The behavior of these methods is investigated under the influence of two factors: the mesh discretization and the medium heterogeneity. We show that, unlike the MFE, the MHFE suffers with the presence of badly shaped discretized elements. Thereat, a numerical reliability analyzing software (Aquarels) is used to detect the instability of a matrix-inversion code generated automatically by a symbolic manipulator. We also show that the spectral condition number of the algebraic systems furnished by both methods in heterogeneous media grows up linearly according to the smoothness of the hydraulic conductivity. Furthermore, it is found that the MHFE could accumulate numerical errors if large jumps in the tensor of conductivity take place. Finally, we compare running-times for both algorithms by giving various numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.