Abstract
A new concept of a two-phase fluid driving system using cavitating flow of a magnetic fluid is proposed, and the driving and acceleration performance of the system is numerically predicted. A typical computational model for cavitating flow of a magnetic fluid is proposed and several flow characteristics, taking into account the strong nonuniform magnetic field, are numerically investigated to realize the further development and high performance of the proposed new type of two-phase fluid driving system using magnetic fluids. Based on numerical results, the two-dimensional structure of the cavitating flow as well as the cloud cavity formation of the magnetic fluid through a vertical converging–diverging channel are shown in detail. The numerical results demonstrate that an effective two-phase magnetic driving force and fluid acceleration can be obtained by the practical use of magnetization of the working fluid. Also clarified is the cavitation number in the case of a strong magnetic field with a larger value than that in the case of a nonmagnetic field. Magnetic control for suppression of cavitation bubbles is remarkably enhanced in the condition of high Reynolds number. Further clarified is the precise control of the cavitating flow of magnetic fluid that is possible by effective use of the magnetic body force that acts on cavitation bubbles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.