Abstract

Numerical methods successively became important in the design and optimization of fluid machinery. However, as noise emission is considered, one can hardly find standardized prediction methods combining flow and acoustical optimization. Several numerical field methods for sound calculations have been developed. Due to the complexity of the considered flow, approaches must be chosen to avoid exhaustive computing. In this contribution the noise of a simple propeller is investigated. The configurations of the calculations comply with an existing experimental setup chosen for evaluation. The used in-house CFD solver SPARC contains an acoustic module based on Ffowcs Williams-Hawkings Acoustic Analogy. From the flow results of the time dependent Large Eddy Simulation the time dependent acoustic sources are extracted and given to the acoustic module where relevant sound pressure levels are calculated. The difficulties, which arise while proceeding from open to closed rotors and from gas to liquid are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.