Abstract

MX-80 bentonite has been considered as a suitable material for the construction of engineered barriers employed in deep geological radioactive waste repositories. These barriers are generally formed of compacted unsaturated bentonite, the latter experiencing a slow saturation due to its low permeability whileinteracting with the surrounding groundwater. In order to verify the long-term safety requirements of engineered barriers, their response to hydration has to be carefully assessed. As part of the recent European project BEACON (Bentonite Mechanical Evolution), the behaviour of MX-80 bentonite subjected to different hydration paths was investigated in a number of laboratory and field experiments and numerical studies. This paper is concerned with numerical simulations of two laboratory experiments performed during the project, with the objective of examining the predictive capabilities of the proposed numerical modelling approach. The experiments were selected due to the granular state of bentonite at its placement in the testingapparatus, which differed from the large number of previous experiments conducted on specimens of compacted bentonite blocks. The paper provides a brief introduction to the adopted modelling framework, a summary of calibrated parameters for the hydro-mechanical constitutive modelling and the results of numerical simulations, concluding that a satisfactory numerical simulation of the experiments was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.