Abstract

The interaction between particles situated in close proximity and moving at supersonic speeds is investigated computationally. The simplest case of the motion of a single particle travelling behind a lead particle is used to elucidate the role of aerodynamic forces in the motion of a group of particles. The effect of the following parameters on the drag and lift forces acting on each of two particles of equal diameter in proximity is investigated: the free-stream Mach number, and the axial and lateral displacements of the trailing particle. The two-dimensional flow field is numerically simulated using an unsteady Euler CFD code to find the steady-state drag and lift coefficients for both particles. Three static zones of aerodynamic influence in the wake of the lead particle are identified, which are denoted as the entrainment, lateral attraction, and ejection zones. A non-dimensional representation of the zones of influence is given. It is shown that the dynamic entrainment of particles can occur even when the path of the trailing particle originates outside the entrainment and lateral attraction zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.