Abstract

Abstract This work aims to demonstrate an advancement towards the integrated modelling of surf zone hydrodynamics by means of a VOF-type numerical model (COBRAS-UC) based on the Reynolds-Averaged Navier–Stokes equations. In this paper, the numerical model is adapted and validated for the study of nearshore processes on a mildly-sloping beach. The model prediction of wave energy transformation and higher order statistics (skewness and asymmetry) are in good agreement with detailed laboratory observations from a barred beach [Boers, M. (1996). “Simulation of a surf zone with a barred beach; Report 1: Wave heights and wave breaking”. Tech. Rep.96-5, Comm. on Hydrol. and Geol. Eng., Dept. of Civil Engineering, Delft University of Technology]. Moreover, the numerical model allows us to study the low-frequency motions inside the surf zone. It is found that in order to achieve a satisfactory simulation of both short- and long-wave transformation, the numerical model must achieve: (i) the simultaneous second-order wave generation and absorption, (ii) the energy transfer between triad of components, (iii) the short- and long-wave energy dissipation inside the surf zone, and (iv) the wave reflection at the shoreline. Comparisons between numerical and experimental results demonstrate the model capability to satisfactorily simulate all the aforementioned processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.