Abstract

Phase change memory is a non-volatile memory technology that utilizes the electrical resistivity contrast between resistive amorphous and conductive crystalline phases of phase change materials. These devices operate at high current densities and high temperature gradients which lead to significant thermoelectric effects. We have performed numerical modeling of electrothermal effects in p-type Ge2Sb2Te5 phase change memory structures suspended on TiN contact pads using COMSOL Multiphysics. Temperature dependent material parameters are used in the model. Strong asymmetry is observed in temperature profiles in all cases: the hottest spot appears closer to the higher potential end suggesting that the thermal profile can be significantly altered by the thermoelectric effects during device operation. Hence, thermoelectric effects need to be considered for device designs for lower power and higher reliability devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.