Abstract

A numerical model of the filament-assisted diamond growth environment has been developed and used to calculate temperature, velocity, and species concentration profiles, accounting both for transport and detailed chemical kinetics. The computed hydrocarbon concentrations agree well with previously measured values, when allowance is made for 3D effects not included in our model. Upper-bound, diffusion-limited film growth rates for various assumed growth species have been computed, and it has been found no hydrocarbon species other than CH3, C2H2, or CH4 can account for measured diamond growth rates. The effect of thermal diffusion on H-atom profiles has been examined, and found to be only 10%. Although the environment is far from thermodynamic equilibrium, several reactions are close to partial equilibrium throughout the region from the filament to the substrate. It is also shown that homogeneous H-atom recombination is too slow to explain the experimentally observed decrease in the concentration of H with increasing initial methane concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.