Abstract

A numerical model is developed to simulate hydrophobic organic compound sorption kinetics, based on a retarded intraaggregate diffusion conceptualization of this solid‐water exchange process. This model was used to ascertain the sensitivity of the sorption process for various sorbates to nonsteady solution concentrations and to polydisperse soil or sediment aggregate particle size distributions. Common approaches to modeling sorption kinetics amount to simplifications of our model and appear justified only when (1) the concentration fluctuations occur on a time scale which matches the sorption timescale of interest and (2) the particle size distribution is relatively narrow. Finally, a means is provided to estimate the extent of approach of a sorbing system to equilibrium as a function of aggregate size, chemical diffusivity and hydrophobicity, and system solids concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.