Abstract
This paper aims to enhance the predictiveness of a finite element (FE) model for machining of natural fiber composites through a tribological approach based on the micro-friction phenomenon between the cutting tool and the components of the composite structure. A 2D micromechanical model for orthogonal cutting of flax fibers reinforced polylactic-acid (PLA) composites is considered in this study at different orientation of fibers. Results show that the numerical thrust forces are significantly affected by the variation of the micro-friction in the model. An optimized value of the micro-friction coefficient has been found to fit with the experimental results. The FE model provides the ability to calculate with good accuracy the effect of fiber orientation on the machinability of flax/PLA composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.