Abstract

The current vs. voltage (I-V) characteristics of single crystal rubrene Organic Field-Effect Transistors (OFETs) and polycrystalline poly(p-phenylenevinylene) (PPV) films are modeled using the polaron transport theory presented in a previous work [A. F. Basile et al., J. Appl. Phys. 115, 244505 (2014)]. The model is first applied to rubrene OFETs, where transport is two-dimensional and is confined near the interface between the insulator and the organic semiconductor. By considering the effect of image charges in the insulator and by assuming a constant intrinsic mobility, we reproduce both the positive and the negative temperature dependences of the channel mobilities measured on OFETs having a gate dielectric and an air-gap insulator, respectively. In addition, we adapt this model to the three-dimensional transport in PPV films, characterized by effective mobilities which depend on temperature, charge density, and electric field. We show that the I-V characteristics of these materials can be matched by the numerical solution of the Poisson and drift-diffusion equations assuming a constant intrinsic mobility. The polaron binding energy can account for the thermally activated behavior of the I-V characteristics and for the increase of the effective mobility at high applied voltages. Therefore, this model enables to extract the intrinsic transport parameters of organic semiconductors, independent of the device structure, and of the measurement conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.