Abstract

The involvement of the dynamic embrittlement phenomenon during tensile tests of a CuNiSi alloy leads to decohesion of grain boundaries, which is dependent on the energy decrease at grain boundaries caused by sulfur segregation. The severity of dynamic embrittlement increases with the increasing of temperature and/or the decreasing of straining rate. A crystal plasticity approach associated with the cohesive zone method is used in order to analyze the fracture caused by dynamic embrittlement. A cohesive zone model is used to describe the grain boundary cracking and one of its main parameters is identified using a homogenization scheme for the nonlinear response of a polycrystal in presence of degradable grain boundaries. Numerical simulations are carried out in order to simulate the mechanical behavior related to dynamic embrittlement under different conditions of strain rate and temperature. The obtained results such as tensile stress-strain curves and intergranular crack distribution are compared with experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.