Abstract
The three-dimensional isothermal flow patterns and mass fluxes in a full-scale, pitched-roof, single-span greenhouse were numerically resolved, and data from tests on a full scale were used to validate the code, the inlet boundary conditions and the greenhouse design grid method. For numerical solution of turbulent flow, a high-Reynolds-number k–ε model is suitable. Computational domain sizes were selected so as to fulfil the requirements of free-stream conditions whilst ensuring that grid geometrical characteristics satisfy the physical limitations of the standard k–ε model. A special feature of a case of a wind blowing parallel to a ridge (0°) is that the flow in the leeward half of the greenhouse comprises two vortexes with opposite senses of rotation, which bring in air mass through the vents and deliver it to the windward half. A spiral type of flow was found for winds blowing at 15–75° to the ridge direction: part of the air enters via the windward wall vent near the leeward gable-wall and emerges through the leeward roof vent near the windward gable-wall.Mass fluxes and flow patterns on wind direction, and on the opening angles of the windward and leeward vents. Thus, the ventilation rate induced by a wind directed perpendicularly to the greenhouse ridge is 4–4.9 times as great as that induced by a wind parallel to the ridge. A ventilation rate of a simulated greenhouse type was found to be significantly less responsive to a change in wind direction from 45° to 90° than to one from 0° to 45°. Present numerical results are in good agreement with those of other experiments and observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.