Abstract

In this paper we investigate the numerical solution of Cauchy bisingular integral equations of the first kind on the square. We propose two different methods based on a global polynomial approximation of the unknown solution. The first one is a discrete collocation method applied to the original equation and then is a “direct” method. The second one is an “indirect” procedure of discrete collocation-type since we act on the so-called regularized Fredholm equation. In both cases, the convergence and the stability of the method is proved in suitable weighted spaces of functions, and the well conditioning of the linear system is showed. In order to illustrate the efficiency of the proposed procedures, some numerical tests are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.