Abstract

During an accident accompanied by core damage in a water-cooled nuclear reactor, a large amount of hydrogen is generated by fuel clad oxidation and released into the reactor containment. Hydrogen mitigation in the containment during a severe accident is important because the integrity of the structures important to safety could be threatened by an explosive combustion of the hydrogen. Even when equipped with a hydrogen mitigation system, if a highly concentrated hydrogen mixture cloud is developed in a compartment of the containment, the compartment integrity with a pressure load from a local detonation must be evaluated. In this study, a reliable numerical method to simulate the detonation of a hydrogen-air mixture was developed for the evaluation of a pressure load from a detonation. The numerical method has the capability to capture shocks robustly as well as resolve combustion phenomena stably. The Euler equations of mass, momentum, energy and gas species are employed as the governing equations of detonation. A central-upwind scheme was adopted as a shock capturing scheme and a reduced chemical kinetic model was applied for combustion. The numerical method was validated by solving experimental cases and applied for understanding detonation shock behaviour in a generic containment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.