Abstract

In this paper, a three-dimensional computational model for the solution of the time-averaged Navier-Stokes equations, based on a pressure correction method and the k-ε turbulence model, is presented and implemented for the viscous flow modelling through a series of centrifugal compressors. Theoretical calculations with the current fully elliptic method are carried out and the results are compared critically with available experimental data and with results from other computational models. A radial and two backswept high-speed subsonic compressors with different geometrical and operating characteristics are analysed at design and off-design conditions. In all cases, a wake flow pattern is evident and strong secondary flows are discerned. The tip clearance effects on the relative flow pattern are found to be important and are appropriately simulated. The predictive capability of the current flow model is judged to be encouraging taking into consideration the limitations of the physical models and the numerical schemes involved in the computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.