Abstract

This paper presents the results of finite element (FE) analysis of axially loaded square hollow structural steel (HSS) columns, strengthened with polymer-mortar materials. Three-dimensional nonlinear FE model of HSS slender columns were developed using thin-shell element, considering geometric and material nonlinearity. The polymer-mortar strengthening layer was incorporated using additional layers of the shell element. The FE model has been performed and then verified against experimental results obtained by the authors [1]. Good agreement was observed between FE analysis and experimental results. The model was then used in an extended parametric study to examine selected AISC square HSS columns with different cross-sectional geometries, slenderness ratios, thicknesses of mortar strengthening layer, overall geometric imperfections, and level of residual stresses. The effectiveness of polymer-mortar in increasing the column’s axial strength is observed. The study also demonstrated that polymer-mortar strengthening materials is more effective for higher slenderness ratios. An equivalent steel thickness is also accounted for the mortar strengthened HSS columns to discuss the effectiveness of polymer-mortar strengthening system. The polymer-mortar strengthening system is more effective for HSS columns with higher levels of out-of-straightness. Level of residual stress has a slight effect on the gain in the column’s axial strength strengthened with polymer-mortar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.