Abstract
A numerical study is performed to investigate the effect of inner surface roughness and microparticles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to 1 μm) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a 100 μm hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of 0.5 μm diameter particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.