Abstract

PurposeThe purpose of this study is to examine the impact of activation energy with binary chemical reaction for unsteady flow on permeable stretching surface.Design/methodology/approachThe simultaneous effects of multiple slip and magneto-hydrodynamic effects at the boundary are taken into account. The thermal buoyancy parameter and thermal radiation are included in both energy and momentum equations, while expression of activation energy is considered in concentration equation. Three-stage Lobatto IIIa finite difference collocation technique with bvp4c MATLAB package is used to obtained numerical results.FindingsThe influence of key elements (Schmidt number, buoyancy force ratio factor, factor of radiation, magnetic element, unsteadiness factor, suction/injection parameter, Prandtl number, activation energy, chemical reaction rate parameter, heat source and sink parameters, velocity, thermal and concentration slips, porosity parameter and temperature difference parameter) on velocity, temperature and concentration profiles are illustrated pictorially. A detailed discussion is presented to see how the graphical aspects justify the physical prospect.Originality/valueIn the best of author’s knowledge, this work is yet not available in existing literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.