Abstract

This article presents a numerical study of natural convection heat transfer and entropy generation of water-alumina nanofluid in baffled L-shaped cavity. The left vertical and bottom walls are placed in hot and constant Th temperature and the middle horizontal and right vertical walls are in cold and constant Tc temperature. The other walls are insulated. The baffle's temperature is Tc and their existence in cavity has a lot of impacts on flow behavior and it could disrupt flow order. The governing equations are solved numerically with Finite Volume Method using the SIMPLER algorithm simultaneously. The convection heat transfer results show: AR (aspect ratio) increasing enhances heat transfer. With dimensional ratio increasing, nanofluid has a greater impact on Nusselt growing. By baffle length increasing nanofluid has less impact on cooling cavity, as a result heat transfer raises. The entropy generation of mentioned parameters are also investigated and discussed. Finally, with studding the ε=Sm/Num (named thermal performance) the best AR and baffle length are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.