Abstract

In this study, new ultrasound reflection and backscatter measurements in cancellous bone using a membrane-type hydrophone are proposed. A membrane hydrophone made of a piezoelectric polymer film mounted on an annular frame allows an incident ultrasound wave to pass through its aperture because it has no backing material. Therefore, in measurements using the membrane hydrophone, the receiving area could be located independently from the transmitting area. In addition, the size and shape of the receiving area, which corresponded to those of the electrode deposited on the piezoelectric film, could be arranged in various ways. To investigate the validity of the proposed measurements, before bench-top experiments, the reflected and backscattered waves from cancellous bone were numerically simulated using a finite-difference time-domain method. The reflection and backscatter parameters were measured on various receiving areas, and their correlation coefficients with the structural parameters in the cancellous bone were derived. The simulated results suggested that appropriate receiving areas for the reflection and backscatter measurements could exist and that the proposed measurements could be more effective for evaluating bone properties than conventional measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.