Abstract
The use of earplugs is commonly associated with an increased perception of the bone-conducted part of one's own physiological noise. This phenomenon is referred to as occlusion effect and is most prominent at low frequencies. Several factors influence the occlusion effect, such as the ear anatomy; the bone-conducted stimulation; and the type of occlusion device and its fit, insertion depth, and material properties. The latter factor is of great interest to potentially reduce the occlusion effect of passive earplugs. This paper investigates the mechanism(s) of contribution of earplugs to the objective occlusion effect. A two-dimensional axi-symmetric finite element model of the outer ear is used and investigated in an electro-acoustic framework. Simulation results are shown to compare reasonably well with measurement data, which qualifies the model to study the influence of earplugs on the occlusion effect. Two mechanisms are highlighted: (i) a Poisson effect induced by the normal component of the earcanal wall vibration and (ii) a longitudinal motion caused by the tangential component of the earcanal wall vibration. By varying the geometry of the surrounding tissues, the spatial distribution of the earcanal wall vibration is shown to influence the contribution of the earplug to the occlusion effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.