Abstract

Soliton molecules evolution is numerically investigated in a passively mode-locked fiber laser based on the nonlinear polarization rotation (NPR) technique. Peak-to-peak separation of soliton molecules can be controlled by changing either pump strength or cavity linear phase delay appropriately. Moreover, soliton molecules with intensity-independent evolution, separation-independent evolution and large intensity-vibrating evolution are numerically found, respectively. The characteristics of soliton molecules evolution versus linear phase delay or pump strength are given. Periodic stable evolution regimes are found. The separation-controllable soliton molecules can be attributed to the mutual effects of phase delay, Kerr nonlinearity and other parameters of the cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.