Abstract

Finned tubes exist in diverse geometric configurations, usually the convective heat transfer coefficient is unknown and approximated as that for a geometry similar to the actual one. This paper presents a numerical investigation about the convective heat transfer in a horizontal finned tube. Ten geometric configurations were considered, which differed on the distance between fins, and two materials were analysed for the fins: aluminium and carbon steel. Eleven different values were considered for the temperature difference between the base of the tube and air. Therefore, a total of one hundred and ten different conditions were studied, for each material. The flow regime was laminar. The analysis showed that approximating the convective heat transfer of the finned tube as that for a tube without fins, for which correlations are available in the literature, can lead to significant errors. The maximum difference verified was for the spacing between fins equal to 2 mm, for which the convective heat transfer coefficient was about seven times lower than that for the tube without fins. For spacings equal to 6 mm and 8 mm, associated to the maximum heat transfer rate, the convective heat transfer coefficient for the tube without fins was about 30% to 50% higher than that for the finned tube. The common assumption of uniform fins surface temperature was also evaluated for the two considered materials the fins were made of. The results showed that for the steel fins the approximation leads to an error of about 10%, while for aluminium it is only about 3%. Results that allow a better understanding of the physical phenomena related to the occurrence of the optimum spacing between fins, which maximize the heat transfer, are also presented and analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.