Abstract

Abstract Dissolution trapping is one of the most dominant mechanisms for CO2 storage in subsurface porous media saturated with brine. The CO2 dissolution rate and overall fluid flow dynamics in subsurface formations can vary significantly based on permeability variation. Although some numerical simulations have focused on these factors, detailed flow behavior analysis under nonuniform permeability distribution needs further study. For this purpose, we conduct simulations on the flow behavior of CO2-dissolved brine in two different heterogeneous media. The spatial permeability variations in the cell enable the analysis of complex subsurface storage phenomena, such as changes in finger morphology and preferential dissolution path. Finally, the amount of CO2 dissolved was compared between each case, based on which we draw informed conclusions about CO2 storage sites. The results demonstrated a preferential movement of CO2-dissolved regions toward high permeability regions, whereas a poor sweep efficiency was observed due to minimum dissolution in areas with lower permeability. Furthermore, simulation results also reveal uneven CO2 concentration inside the convective fingers. This study provides fundamental insight into the change in flow behavior at heterogeneous regions, which could be translated into saline aquifer conditions. The proposed workflow in this study could be extended further to analyze complex heterogeneous storage systems at different flow regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.