Abstract

A 100,000 t/year demonstration project for carbon dioxide (CO2) capture and storage in the deep saline formations of the Ordos Basin, China, has been successfully completed. Field observations suggested that the injectivity increased nearly tenfold after CO2 injection commenced without substantial pressure build-up. In order to evaluate whether this unique phenomenon could be attributed to geochemical changes, reactive transport modeling was conducted to investigate CO2-water-rock interactions and changes in porosity and permeability induced by CO2 injection. The results indicated that using porosity-permeability relationships that include tortuosity, grain size, and percolation porosity, other than typical Kozeny-Carman porosity-permeability relationship, it is possible to explain the considerable injectivity increase as a consequence of mineral dissolution. These models might be justified in terms of selective dissolution along flow paths and by dissolution or migration of plugging fines. In terms of geochemical changes, dolomite dissolution is the largest source of porosity increase. Formation physical properties such as temperature, pressure, and brine salinity were found to have modest effects on mineral dissolution and precipitation. Results from this study could have practical implications for a successful CO2 injection and enhanced oil/gas/geothermal production in low-permeability formations, potentially providing a new basis for screening of storage sites and reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.