Abstract
Centrifugal pumps are known to efficiently transport water from a certain point. However, they developed great concerns in water supply and distribution applications regarding their operating efficiency, which were caused by the accumulated losses and sudden power consumption growth. Thus, mitigating these concerns is important to improve the performance of the centrifugal pump. This study used ANSYS 2022 R2 for the optimization design process, combining the strengths of Computational Fluid Dynamics (CFD) and Response Surface Method (RSM), to come up with an optimal design for a centrifugal water pump. Splitter blades, with a length of 80% of the main blade, were included in the design to assess their effects on the performance of the pump. Design parameters such as the placement of the splitter blades, their ellipse ratios, and the volute tongue, were also investigated for further improvement. Results indicate that finding a perfect balance between the placement of the splitter blades, the design of the volute tongue clearance and thickness, and configuring the ellipse ratio of the splitter blades improves the pump’s performance. The optimal design results in 27.35%, 15.70%, 28.18%, 16.67%, and 8.36% improvement in total efficiency, total head, static efficiency, static head, and power consumption, respectively.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have