Abstract

For simulating multiaxial ratcheting behavior, the modified Chaboche kinematic hardening model was numerically implemented by using the framework of a small-strain elastic-plastic theory. Unlike early models, this improved multiaxial model is difficult to implement using finite element methods owing to its complicated constitutive relations, such as radial evanescence terms and the fourth hardening rule with a threshold. We present an effective procedure for numerical implementation using Voigt notations and the implicit radial return method with Newton-Raphson iterations. All the equations of constitute numerical integration and consistent tangent operator (CTO) are simply solved using matrix operations. The integration algorithm is validated by using both numerical examples and analytical solutions. The CTO is verified by additional stress calculations. The model detects variations in the cyclic indentation response with changes in a multiaxial-dependent parameter. The numerical implementation allows simulations of both biaxial and general multiaxial ratcheting behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.