Abstract

Numerical resolution of two-stream kinetic models in a strong aggregative setting is considered. To illustrate our approach, we consider a one-dimensional kinetic model for chemotaxis in hydrodynamic scaling and the high field limit of the Vlasov--Poisson--Fokker--Planck system. A difficulty is that, in this aggregative setting, weak solutions of the limiting model blow up in finite time, and therefore the scheme should be able to handle Dirac measures. It is overcome thanks to a careful discretization of the macroscopic velocity resulting of Vol'pert calculus: accordingly, a new well-balanced and asymptotic preserving numerical scheme is provided. Numerical simulations confirm a good behavior of solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.