Abstract
Abstract The Rand two-level general circulation model has been integrated to compute ground surface (bare land) temperature by solving: 1) the interface heat balance equation without soil heat flux; 2) the interface heat balance equation by including parameterized soil heat flux; and 3) a prognostic equation which includes the heat capacity of the soil as well as an explicit formulation for soil heat flux. The integrations were performed for 48 hours for the month of January. A comparison of results shows that the most realistic distribution of the ground surface temperature with respect to the amplitude, diurnal range, and the phase relationship between the ground temperature, solar radiation, and soil heat flux is given by the solution of the prognostic equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.