Abstract

The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reduce the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.