Abstract
A potential flow and viscous flow solver have been coupled to produce a robust computational tool useful for the design of low-speed wind tunnel contractions. After validation against published numerical and experimental wind tunnel data, the method is used to evaluate recently proposed contraction shapes from the literature. The results show that, on balance, a fifth-order polynomial provides a good design solution. Newly proposed shapes will either improve available flow area at the expense of contraction outlet flow uniformity or vice versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.