Abstract

The current study develops a novel application of numerical computing paradigm to inspect the cumulative effects of both electric and magnetic field on a micropolar nanofluid bounded by two parallel plates in a rotating system by using Adams and Explicit Runge–Kutta (RK) solvers. The steady state micropolar nanofluidics flow has been considered between parallel plates under the Hall current effect. The conventional expressions for the governing flow in terms of system of ODEs are engaged. Adams and Explicit RK-based numerical solvers have been exploited for approximate solution of the system dynamics. Accuracy, convergence and stability analyses of both numerical schemes established their correctness. The impact of the Sherwood number on the concentration profile, Nusselt number and coefficient of skin friction on temperature and velocity profiles, respectively, have been analyzed numerically along with thermophoresis investigation, rotation, Hall current and Brownian motion of micropolar nanofluid. The effect of physical quantities including viscosity, magnetic, rotating, coupling, Brownian motion, thermophoretic and micropolar fluid parameters as well as Prandtl and Schmidt numbers has been presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.