Abstract

Many degenerate diffusion–reaction equations permit sharp travelling wave solutions that describe the propagation of an interface with finite speed. If the equation is at least double degenerate, the derivative of the travelling wave solution can blow up at the interface, which poses considerable challenges for the computation of the travelling wave speed. We propose a numerical method for this problem that is based on the idea to approximate the multiple degenerate problem by a family of simple degenerate problems. For the latter we propose an interval-bracketing algorithm based on the theory of Sanchez-Garduno and Maini. The travelling wave speed of the original problem is obtained as the limit of the travelling wave speeds of the auxiliary problems. The performance of the method is investigated in a numerical simulation experiment for a problem that arises in the mathematical modelling of biofilm processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.