Abstract

In the present article, we apply a numerical scheme, namely, homotopy analysis Sumudu transform algorithm, to derive the analytical and numerical solutions of a nonlinear fractional differential-difference problem occurring in nanohydrodynamics, heat conduction in nanoscale, and electronic current that flows through carbon nanotubes. The homotopy analysis Sumudu transform method (HASTM) is an inventive coupling of Sumudu transform algorithm and homotopy analysis technique that makes the calculation very easy. The fractional model is also handled with the aid of Adomian decomposition method (ADM). The numerical results derived with the help of HASTM and ADM are approximately same, so this scheme may be considered an alternative and well-organized technique for attaining analytical and numerical solutions of fractional model of discontinued problems. The analytical and numerical results derived by the application of the proposed technique reveal that the scheme is very effective, accurate, flexible, easy to apply, and computationally very appropriate for such type of fractional problems arising in physics, chemistry, biology, engineering, finance, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.