Abstract

Hydropower is an important source of energy in Latin America. Many countries in the region, including Brazil, Peru, Colombia, and Chile, rely heavily on hydropower plants to meet their energy needs. However, there are also challenges related to the use of hydropower in the region, such as the construction of dams that can have negative impacts on ecosystems and local communities. A new alternative is the production of energy through hydrokinetic turbines because they are a clean and renewable energy source that does not emit greenhouse gases. In addition, its production is predictable and can be generated in a variety of environments, from coasts to rivers and canals. Within the hydrokinetic turbines are the H-Darrieus turbines although they are still under development, they are seen as an important opportunity to diversify the energy matrix and reduce dependence on fossil fuels. The main purpose of this study is to determine and compare the efficiency of three Darrieus H-type vertical axis hydrokinetic turbines numerically. The turbines were configured with different solidities. The NACA 0018 profile was used for the turbine design. The study was carried out using the ANSYS® Fluent 2022R2 software, two-dimensional (2D) simulations set up constant operating conditions. Rotation speed variations have been set between 21 and 74 RPM with 10 rpm increments. Furthermore, the General Richardson extrapolation method is used for the analysis of mesh convergence, monitoring the turbine power coefficient as a convergence parameter. The numerical results show that the turbine H-Darrieus with a solidity of 1.0, a wider operating range, and lower power and torque coefficient. At low TRS, the largest solidity provided the best efficiency and the greatest self-starting capability, but it also had the smallest operating range

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.