Abstract
A new integro-differential equation is derived for steady free-surface waves. Numerical solutions of this equation for periodic gravity-capillary waves on a fluid of infinite depth are presented. For the two limiting cases of gravity waves and capillary waves, our results are in excellent agreement with previous calculations. For gravity-capillary waves, detailed calculations are performed near the wave-number at which the classical second-order perturbation solution breaks down. Our calculations yield two solutions in this region, which in the limit of small amplitudes agree with the results obtained by Wilton in 1915; one solution has the small amplitude behaviour of a gravity wave and the other that of a capillary wave, but the numerical results show that at large amplitudes both waves have the characteristics of capillary waves. The calculations also show that the wavenumber range in which two solutions exist increases with increasing wave height.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.