Abstract
We express the resonant energies of the delta-shell potential in terms of the Lambert W function, and we calculate their decay widths and decay constants. The ensuing numerical results strengthen the interpretation of such decay widths and constants as a way to quantify the coupling between a resonance and the continuum. We calculate explicitly the decay energy spectrum of the resonances of the delta-shell potential, and we show numerically that the lineshape of such spectrum is not the same as, and can be very different from, the Breit–Wigner (Lorentzian) distribution. We argue that the standard Golden Rule cannot describe the interference of two resonances, and we show how to describe such interference by way of the decay energy spectrum of two resonant states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.