Abstract

Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.